
 1

Trojan Horse in DRE
Application Software

Method
Malicious code hidden in DRE polling station that enables:

1. Someone to access special features that can siphon votes from one candidate (or
option for questions) to another after ballot definitions have been determined.

2. Votes to be siphoned between candidates based on predetermined criteria such as
moving votes between candidates associated with political parties. This would
require the DRE software to read the ballot definition files. Votes could also be
siphoned between candidates based on non-party-based attributes such as
percentage of the vote received.

3. The attack could also result in disrupting an election, perhaps via a denial or
service type method.

Access to each DRE, the host server(s) or machine(s) on which the master copy of the
source code, or compiled binary image(s) of the application software are created and/or
stored, or any intermediary system(s) that might be responsible for installing software
onto the DRE's.

Taxonomy
Wholesale, Configuration-related, Change Management, programming, software.

Applicability
DRE, DRE with VVPT

Resource Requirements
For any of the three attack methods above, the perpetrator must be a skilled programmer
and have access to the source code. This could occur at either the vendor (or a sub-
contractor) site, or a test lab (assuming the vendor has provided the source code to the
VSTL). It could happen within an elections office, but only in the case where the vendor
made source code and installation procedures available at the local facility, which is not a
vendor's typical method of operation. The perpetrator must be skilled at understanding
how votes are actually created and tabulated, the methods used for internal auditing and
crosschecks, and how the code is tested.

 2

For a Type 1 attack, there must also be a perpetrator with access to the DREs at the states
and counties. The perpetrator does not even need access to all counties, or even all
precincts, but can could be effective by targeting DREs to be placed within critical
demographic regions. The access can be either authorized (an election official, e.g.,
whose job it is to input ballot definitions, test DREs, or otherwise touch a large number of
machines) or unauthorized (e.g., via a break-in to a storage warehouse).

Potential Gain
The potential gain is large. Since the attack impacts many separate DREs, a small
number of votes can be stolen per DRE adding up to enough votes to change the results
for a race.

Likelihood of Detection
The malicious code could be detected in several places: by the vendor, by the test lab, or
by an election official noticing anomalous results during a test or in a real election. A
skilled programmer will generally be able to hide a significant amount of dangerous code
without being detected in testing. (See countermeasures.) Detection would depend on
the individual skills and depth of the source code review (either at the vendor or the test
lab), or the amount of attention being paid to each DRE’s behavior during testing or in a
real election.

Countermeasures
Source code review: User interface code, for example, tends to be extremely complicated
calling multiple libraries. Source inspections and reviews that might catch this type of
code typically cost over $500,000 and take over 6 months. In addition, any change to the
source code must result in a similarly expensive re-review.

Open-ended testing: This testing also is very expensive and requires significant
security analysis expertise.

Testing that fully simulates Election Day activities

Independent Dual Verification with audit

Parallel Testing

 Citations
Ken Thompson, Turing Award Speech, 1984: http://cm.bell-labs.com/who/ken/trust.html

 3

The moral is obvious. You can't trust code that you did not totally create yourself.
(Especially code from companies that employ people like me.) No amount of source-
level verification or scrutiny will protect you from using untrusted code. In demonstrating
the possibility of this kind of attack, I picked on the C compiler. I could have picked on
any program-handling program such as an assembler, a loader, or even hardware
microcode. As the level of program gets lower, these bugs will be harder and harder to
detect. A well installed microcode bug will be almost impossible to detect.

Retrospective
While there is no evidence that wholesale vote fraud has occurred using DREs, the issue
is whether this is possible in the future. Given the large payoff possible, the relatively
low likelihood of detection if a very skilled programmer in involved, the large number of
very skilled programmers available, and the small number of perpetrators necessary, this
threat is a serious threat to consider for the future.

